The Effect of 8.25% Sodium Hypochlorite on Dental Pulp Dissolution and Dentin Flexural Strength and Modulus

James K.T. Cullen, DMD, James A. Wealleans, DMD, Timothy C. Kirkpatrick, DDS, and John M. Yaccino, DDS

Abstract

Introduction: The purpose of this study was to evaluate the effect of various concentrations of sodium hypochlorite (NaOCl), including 8.25%, on dental pulp dissolution and dentin flexural strength and modulus. Methods: Sixty dental pulp samples and 55 plane parallel dentin bars were refreshed. Five test groups (n = 10) were formed consisting of a pulp sample and dentin bar immersed in various NaOCl solutions. The negative control group (n = 5) consisted of pulp samples and dentin bars immersed in saline. The positive control group (n = 5) consisted of pulp samples immersed in 8.25% NaOCl without a dentin bar. Every 6 minutes for 1 hour, the solutions were refreshed. The dentin bars were tested for flexural strength and modulus with a 3-point bend test. The time until total pulp dissolution and any changes in dentin bar flexural strength and modulus for the different NaOCl solutions were statistically analyzed. Results: An increase in NaOCl concentration showed a highly significant decrease in pulp dissolution time. The pulp dissolution property of 8.25% NaOCl was significantly faster than any other tested concentration of NaOCl. The presence of dentin did not have a significant effect on the dissolution capacity of NaOCl if the solutions were refreshed. NaOCl concentration did not have a statistically significant effect on dentin flexural strength or modulus. Conclusions: Dilution of NaOCl decreases its pulp dissolution capacity. Refreshing the solution is essential to counteract the effects of dentin. In this study, NaOCl did not have a significant effect on dentin flexural strength or modulus. (J Endod 2015;41:920–924)

Key Words
Dental pulp, dentin, dissolution, flexural modulus, flexural strength, sodium hypochlorite

The main goal of endodontic treatment is the prevention or treatment of apical periodontitis (1) in which bacteria play a critical role (2). Thorough debridement of pulp tissue and disinfection of the canal space is essential in achieving this goal (3). Instrumentation alone is not able to fully debride the canal space, especially in irregularly shaped canals and isthmuses (4); therefore, an effective disinfection agent is required for successful endodontic treatment.

In 1915, the English chemist Henry Dakin recommended using a “weak neutral solution of sodium hypochlorite” (0.5%–0.6%) to irrigate infected wounds (5). As early as 1920, sodium hypochlorite (NaOCl) became a main irrigant in endodontics (6) and is currently the preferred endodontic irrigant. According to Zehnder (3), the ideal root canal irrigant should have a broad antimicrobial spectrum, dissolve necrotic pulp tissue, inactivate endotoxin, prevent or remove the smear layer, and be nontoxic and noncaustic to periodontal tissues with little potential for anaphylactic reactions. Although NaOCl does not fully meet his description of an ideal irrigant, it meets many of his requirements. Besides having antibacterial properties, it is readily available, inexpensive, and has a long shelf life (7). NaOCl’s ability to dissolve dental pulp tissue is beneficial during endodontic therapy.

It is common for dentists to use ordinary household bleach purchased from local stores as their source for the NaOCl used during endodontic irrigation (8). Because there may be many different concentrations of NaOCl available, the dentist should be aware of the concentration they are using and any possible effects on treatment. Historically, concentrations of 5.25% and 6% NaOCl were available, and, in many cases, companies have discontinued their production. In 2012, a concentrated 8.25% NaOCl became available; however, many dentists are not aware of this change. These solutions are frequently used “full strength” or they may be diluted with water to a concentration as low as 0.5% (9). The effect of 8.25% NaOCl on pulp dissolution and the physical properties of dentin has not been previously evaluated.

The purpose of this study was to evaluate the effect of various concentrations of NaOCl, including 8.25%, on dental pulp dissolution and the flexural strength and modulus of dentin and to determine if regularly refreshing the NaOCl could overcome the negative effect dentin has on pulp dissolution. The null hypothesis was that an increase in NaOCl concentration would not have a significant impact on pulp dissolution or dentin flexural strength and modulus.

Materials and Methods

Freshly extracted permanent mandibular molars were stored in 0.5% chloramine-T. The teeth were sectioned with bolt cutters in a facial-lingual direction (Fig. 1A), and
the pulps were removed (Fig. 1B) and rinsed with physiologic saline to remove any debris and blotted dry. Samples were collected from the pulp with the use of 2-mm diameter biopsy punches (Uni-Punch; Premier, Plymouth Meeting, PA) (Fig. 1C and D) and then weighed to the nearest 10⁻⁴ g (HR-200, Orion Analytical Balance Series; A&D Weighing, Milpitas, CA). This standardized the samples both by weight and surface area. Five experimental groups containing 10 samples each were tested. Both a negative and positive control group containing 5 samples each were also tested. All samples were stored in physiologic saline at 4°C until tested.

Standardized plane parallel dentin bars were produced by longitudinally sectioning the teeth into 1 mm × 1 mm × 10 mm segments with an Isomet low-speed saw (Buehler, Lake Bluff, IL) equipped with a 0.30-mm-thick, Series 15, high-concentration wafering diamond blade (Buehler) (Fig. 1E and F). No enamel or cementum was included in the dentin bars. These samples were also stored in physiologic saline until tested.

Test samples were randomly assigned to a group according to the following NaOCl concentrations: 0.5%, 2%, 4.125%, 6.0%, and 8.25%. The reduced-concentration NaOCl solutions were prepared by diluting 8.25% NaOCl (Clorox Concentrated Bleach, Oakland, CA) with distilled water. There was a positive control group for the pulp samples and negative control groups for both pulp samples and dentin bars.

 Immediately before testing, a pulp sample and dentin bar were blotted dry and placed into a 74-μm pore size Netwell insert (Corning Life Sciences, Tewksbury, MA) (Fig. 1G), which was placed into 1 well of a multiwell plate (Fig. 1H). Each well received 2 mL of 1 of the NaOCl solutions applied over the dentin bar first to immerse both the pulp and dentin bar in the solution. The positive control group only included a pulp sample without a dentin bar and used 8.25% NaOCl. Physiologic saline was used for the negative control group.

Every 6 minutes, the Netwell insert, including the pulp sample and dentin bar, were removed from the well along with the remaining solution. Then, the Netwell insert was placed back into the well, and 2 mL of a fresh solution of the same concentration of NaOCl was added by the same method. The time until complete dissolution of the pulp tissue was measured to the nearest second. To standardize the times that all dentin bars were immersed in NaOCl, the solutions were replaced in all wells every 6 minutes for a total of 60 minutes. At that time, any remaining pulp samples, including those from the negative control group, were removed from the solution, blotted dry, and weighed. The initial and final weights of the samples were compared. The time required until total pulp dissolution of the test groups was statistically analysed, whereas the time for dissolution of the positive control group was compared with the test group with 8.25% NaOCl to determine whether or not the presence of dentin had a significant effect.

This study also measured the effect of the different NaOCl concentrations on the flexural strength and modulus of the dentin bars. After 60 minutes of immersion, the dentin bars were removed from the solutions, rinsed with saline, and their width and depth were measured with an electronic digital caliper (GA182; Grobet Vigor, Carlstadt,
Basic Research—Technology

NJ). Using a universal testing machine (Instron, Norwood, MA), each specimen was placed on a 3-point bending test device, and a central load was applied with a head diameter of 2 mm at a crosshead speed of 0.25 mm/min. The flexural strength was calculated using the following equation:

\[\sigma_{FS} = \frac{3Fl}{2bd^2} \]

where \(F \) is the loading force at the fracture point, \(l \) is the length of the support span, \(b \) is the width, and \(d \) is the depth of the specimen. The mean and standard deviation were calculated. Flexural modulus was determined from the slope of the linear region of the load-deflection curve using the analytic software (Bluehill 2, version 2.31, Instron).

Statistical Analysis

Means, standard deviations, medians, and interquartile ranges were calculated for the measured interval variables. Differences of interval variables among concentrations were tested with analysis of variance. In the event the null hypothesis was rejected, Tukey contrasts were used to compare means. In the event the null hypothesis was accepted, post hoc power analyses were performed. A paired t test was used to compare pre- and postexperiment means in the pulp negative control.

Results

All pulp tissue samples were completely dissolved within the 1 hour test time, except for the negative control, which had no significant change in weight. There were highly significant differences \((P = .00001) \) between all groups, except between the 8.25% NaOCl group and the positive control group in which there was no significant difference (Fig. 2).

Although there was a trend toward decreasing flexural strength with increasing NaOCl concentration, this was not statistically significant (Table 1 and Fig. 3A). There was no statistically significant difference in the flexural modulus between groups (Table 1 and Fig. 3B).

Discussion

Many dentists use NaOCl as an endodontic irrigant because of its antibacterial properties and its ability to dissolve pulp tissue (7). NaOCl is a strong base and derives its ability to dissolve tissues from its high pH (>11). The pH decreases when exposed to amino acids by releasing hydroxyl ions, forming water and salt. NaOCl solution also contains hypochlorous acid that acts as a solvent when in contact with organic tissues. Hydroxyl ions and hypochlorous acid lead to amino acid degradation and hydrolysis (10). NaOCl’s antibacterial effects are because of the hypochlorous acid, which contains active chlorine, a strong oxidizing agent. The chlorine irreversibly oxidizes essential enzymes of the bacteria, disrupting its metabolic functions. Chlorine may interact with cytoplasmic components, creating toxic compounds that can destroy the bacteria (11). NaOCl has been shown to have a greater dissolution effect on necrotic tissues than normal, healthy tissue (12). Unfortunately, it has a poor ability to inactivate endotoxin (13) and does not remove or prevent formation of the smear layer (14).

There have been multiple case reports on NaOCl incidents that include clinical symptoms of severe pain, edema, bleeding, ecchymosis, and potential for infection (15–18). As a result, many have cautioned against the use of a concentrated NaOCl solution because of its cytotoxicity and potential for clinical complications if extruded into the periradicular tissues (9, 17–19). They recommend a diluted concentration that still retains its disinfective properties (9, 18). Concentrations as low as 0.5% and 1% NaOCl have been recommended (9), and studies by Rocas and Siqueira (11) and Siqueira et al (20) have shown that solutions of 1% and 2.5% NaOCl still maintain their antimicrobial effect.

Alternatively, studies by Harrison et al (21, 22) on the clinical toxicity of irrigants found that the use of 5.25% NaOCl did not result in an increase in interappointment pain. Another study showed that the dilution of 5.25% NaOCl resulted in a significant decrease in the ability to dissolve necrotic tissue (23).

Many studies have shown that the tissue dissolution capabilities of NaOCl can increase with an increase in concentration (24–26); however, these studies used dermal connective tissues from rats and bovine muscle. Few studies have been completed using human dental pulp tissue, which may be more clinically relevant. In a study that did use human dental pulp, only a concentration of 2.5% NaOCl was investigated (27). That study indicated that the presence of dentin would have a negative effect on the pulp dissolution capability of NaOCl, but the authors did not refresh the solution, which would be done in a clinical situation.

This study showed no significant difference in pulp dissolution time between the 8.25% NaOCl solution with the dentin bar and the positive control without the dentin bar. Because the solutions were refreshed, the presence of dentin did not have a significant effect on the dissolution.

Figure 2. The mean times for total pulp dissolution in various concentrations of NaOCl. There were highly significant differences \((P = .00001) \) between all groups, except between the 8.25% NaOCl group and the positive control group.

Table 1. Mean, Standard Deviation (SD), Median, and Interquartile Range (IQR) for Flexural Strength and Flexural Modulus for Various Concentrations of Sodium Hypochlorite (NaOCl)

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>IQR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexural strength (MPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5% NaOCl</td>
<td>10</td>
<td>496.9</td>
<td>159.5</td>
<td>486.4</td>
<td>235.7</td>
</tr>
<tr>
<td>2.0% NaOCl</td>
<td>10</td>
<td>442.0</td>
<td>123.4</td>
<td>470.7</td>
<td>138.6</td>
</tr>
<tr>
<td>4.125% NaOCl</td>
<td>10</td>
<td>382.6</td>
<td>112.0</td>
<td>393.9</td>
<td>166.2</td>
</tr>
<tr>
<td>6.0% NaOCl</td>
<td>10</td>
<td>375.8</td>
<td>74.9</td>
<td>391.1</td>
<td>92.1</td>
</tr>
<tr>
<td>8.25% NaOCl</td>
<td>10</td>
<td>397.3</td>
<td>121.2</td>
<td>394.6</td>
<td>163.8</td>
</tr>
<tr>
<td>Control (saline)</td>
<td>5</td>
<td>514.3</td>
<td>102.7</td>
<td>529.8</td>
<td>96.0</td>
</tr>
<tr>
<td>Flexural modulus (Gpa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5% NaOCl</td>
<td>10</td>
<td>14.9</td>
<td>7.5</td>
<td>13.6</td>
<td>9.9</td>
</tr>
<tr>
<td>2.0% NaOCl</td>
<td>10</td>
<td>18.2</td>
<td>6.8</td>
<td>18.3</td>
<td>9.7</td>
</tr>
<tr>
<td>4.125% NaOCl</td>
<td>10</td>
<td>16.4</td>
<td>8.3</td>
<td>17.2</td>
<td>10.6</td>
</tr>
<tr>
<td>6.0% NaOCl</td>
<td>10</td>
<td>21.6</td>
<td>8.6</td>
<td>23.0</td>
<td>15.6</td>
</tr>
<tr>
<td>8.25% NaOCl</td>
<td>10</td>
<td>12.5</td>
<td>4.9</td>
<td>11.0</td>
<td>4.2</td>
</tr>
<tr>
<td>Control (saline)</td>
<td>5</td>
<td>17.4</td>
<td>6.4</td>
<td>15.8</td>
<td>8.2</td>
</tr>
</tbody>
</table>
capacity of NaOCl. This emphasizes the importance of consistently refreshing the NaOCl solution during treatment to minimize the negative effects of dentin on the pulp dissolution properties of NaOCl.

Other research has looked at NaOCl’s effect on dentin and shown that an increase in the NaOCl concentration will have a negative impact on the flexural strength of dentin (28–30). Although an increase in the NaOCl concentration can increase its penetration into dentinal tubules, potentially creating a greater antimicrobial effect (31), it may also cause a greater increase in decalcification of the root canal dentin (32). Although decalcification has an impact on the inorganic portion of dentin, NaOCl also has an effect on the organic portion, which constitutes approximately 20% of dentin by weight. Most of this consists of type 1 collagen, which contributes to the mechanical properties of dentin (33). Zhang et al (34) found that NaOCl had a concentration-dependent and time-dependent deleterious effect on dentin by degrading the collagen content. This led to an increased ratio of apatite crystallites compared with collagen, making the dentin more brittle.

Three main factors make endodontically treated teeth more susceptible to fracture: loss of tooth structure, altered proprioception, and altered physical properties of dentin (28). NaOCl may have an impact on these physical properties and play a role in fractures, which could ultimately lead to failure (30). However, the clinical significance of NaOCl’s effect on dentin is unknown, and the obvious limitation of any in vitro study is in determining its clinical relevance. Therefore, caution must be used before making any clinical extrapolation. Our study found no statistically significant difference between the flexural strength and modulus of dentin in the control group and any of the test groups. This finding differs from previous studies that showed an increase in the concentration of NaOCl has a negative effect on dentin flexural strength and modulus (28–30). There are many factors that could have influenced the findings of our current study. This result may have occurred because there was no way to account for many factors that could have affected the dentin flexural strength and modulus before testing, such as the age of the patient, any systemic conditions, or normal variability between individuals.

In conclusion, the null hypothesis for pulp dissolution was rejected, but it was accepted in regard to dentin flexural strength and modulus. This study found that there is an increase in the pulp dissolution capability of NaOCl with an increase in concentration, the tissue dissolution property is not negated by dentin if the NaOCl is refreshed, and there is no statistically significant decrease in dentin flexural strength or modulus with an increase in NaOCl concentration. It is important for dental providers to be aware of the concentration of NaOCl they are using during endodontic treatment and that using full-strength (8.25%) NaOCl will quickly and effectively dissolve pulp tissue with little effect on dentin’s physical properties. More research is necessary to discover a solution that satisfies all of the criteria for an ideal endodontic irrigant.

Acknowledgments

The authors thank Dr Anibal Diogenes and Dr Kraig Vandewalle for their contributions to the design of this study and Mr Danny Sharon from Adolos Strategic for his statistical support. The authors deny any conflicts of interest related to this study.

References