imaging technique. Given this, they make the assumption that a very sophisticated imaging technique that can clearly identify anatomic alterations can provide information regarding the underlying pathophysiologic mechanism for the sensory findings and patient complaint. In addition, they invoke the surgical findings as being correlated with the imaging findings and clinical neurosensory examination findings and that this is indication for the surgical intervention.

Although they correctly state that microneurosurgical procedures do have efficacy in improving sensation to so-called “functional sensory return,” there are also data to show that there is poor correlation between the level of sensory alteration (A, B, C) and the surgical findings.4-7 Having said that, the authors also think that this technique will “significantly improve patient care” without presenting the outcome data on their patient population in this study.8

The authors should be congratulated on presenting the first report of a new and exciting imaging technique that will hopefully add to our ability to comprehensively evaluate, classify, and make difficult clinical decisions in patients that present with troublesome trigeminal sensory abnormalities. At this time, I am not sure that this technique sufficiently adds to our ability to differentiate nerve abnormalities any better than the current methods of a detailed history, physical examination, and clinical neurosensory testing with the use of current well established testing classification for the trigeminal system.

Steven J. Scrivani, DDS, DMedSc
The Craniofacial Pain Center
Tufts University School of Dental Medicine
Boston, Massachusetts

REFERENCES

doi:10.1016/j.tripleo.2011.01.048

Morphological evaluation of the inferior alveolar nerve in patients with sensory disorders by high-resolution 3D volume rendering MR neurography on a 3.0T system

In reply:
We appreciate Professor Scrivani’s positive statement regarding our work. Although we agree with the fact that an imaging method never replaces quantitative sensory testing in clinical judgment, we nevertheless think that development of a better diagnostic imaging method helps improve patient care.

The algorithm presented in our report1 represents a technique capable of much higher anatomic resolution of the inferior alveolar nerve compared with any other method hitherto available. A basic rule for any new imaging system and algorithm2,3 is that the judgment of how the new technique affects everyday clinical practice has to wait until the time when the method, including the system and algorithm, becomes available to the majority of clinicians. Meanwhile, we will continue to pursue our goal of developing microscopic resolution for disease processes.4

Makoto Terumitsu, DDS, PhD
Division of Dental Anesthesiology
Graduate School of Medical and Dental Sciences
University of Niigata
Niigata, Japan

Tsutomu Nakada, MD, PhD, FAAN
Center for Integrated Human Brain Science
Brain Research Institute, University of Niigata
Niigata, Japan

REFERENCES