A comparative evaluation of the sealing ability of 2 root-end filling materials: an in vitro leakage study using Enterococcus faecalis

Uma Nair, DMD, MDS,a Simon Ghattas, DMD,b Mohamed Saber, BDS,b Marianna Natera, DDS,b Clay Walker, PhD,c and Roberta Pileggi, DDS, MS,d Gainesville, FL UNIVERSITY OF FLORIDA

Objective. The purpose of this study was to evaluate the sealing ability of EndoSequence Bioceramic Root-end Repair (BCRR) material when compared with white mineral trioxide aggregate (WMTA).

Study design. Forty single-rooted teeth were instrumented, obturated with gutta-percha, root-end resected, and retrofilled with 2 different materials: white ProRoot MTA (WMTA) (n = 15) and BCRR (n = 15). Unfilled specimens (n = 10) received no retrofill and were used as controls. All groups received E. faecalis in a created reservoir coronal to the root filling and the presence of microleakage was evaluated by counting the colony-forming units from each specimen. The results were analyzed with 1-way analysis of variance.

Results. There was no significant difference in leakage between the 2 experimental groups, but there was a significant difference with the control (P ≤ .05).

Conclusions. This study suggests that BCRR is equivalent in sealing ability to WMTA when used as root-end filling material in vitro. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:e74-e77)

Nonsurgical endodontic treatment has a high success rate.1,2 Adequate preparation and obturation of the root canal system is key to endodontic success.3,4 Surgical intervention is indicated when orthograde retreatment fails or is contraindicated. The objective of periapical surgery is to eliminate diseased tissues and obtain an apical seal to prevent the ingress of residual irritants into the periradicular area.5 Resection and retrograde preparation of the root canal is followed by placement of a material to seal the apical canal anatomy.5 The ideal materials for root-end fillings should be biocompatible, insoluble, dimensionally stable, and, perhaps most importantly, be able to seal the root canal system.6 An array of restorative materials has been adapted for root-end filling, such as amalgam, composite, glass ionomer, and super-EBA.7 Mineral trioxide aggregate (MTA) was introduced specifically for root-end filling and perforation repair.7,8 It is rapidly becoming the "golden" standard for root-end filling materials.9 MTA demonstrates superior sealing ability and biocompatibility compared with other materials9–11; however, poor handling characteristics, initial looseness, and slow setting time make MTA difficult to use.12

The manufacturer of a novel material, EndoSequence BioCeramic Root-end Repair (BCRR), claims comparable physical and mechanical properties to MTA but with superior handling and setting characteristics. Leakage remains a priority when evaluating new retrograde filling materials.13–15 Based on this premise, the aim of this study was to compare, in vitro, the microleakage of BCRR material with MTA as retrograde filling materials using a bacterial leakage model. The null hypothesis (H0) was that there was no statistically significant difference in bacterial leakage between the 2 materials.

MATERIAL AND METHODS

Tooth selection and orthograde procedures

Forty intact, single-canal, freshly extracted human teeth with mature apices were selected for this study. Initial radiographs were obtained for all teeth. A low-speed diamond saw (NSK Z500 brushless motor; Brasseler USA, Savannah, GA) was used to decoronate the teeth to standardize specimen length (12.96 ± 0.37 mm). Working length was determined by placing a #10 file into the canal until it was visualized at the apex and then subtracting 1 mm. Apical preparation was then completed with Profile GT files (Dentsply, Tulsa Den-
tal Specialties, Tulsa, OK) to a size 40/0.06. The canals were irrigated with 6.15% sodium hypochlorite (NaOCl; Chlorox, The Chlorox Co, Oakland, CA) and lubricated with EndoGel (Jordco Inc., Beaverton, OR) throughout the mechanical preparation. The canals were dried with medium paper points (Henry Schein, Inc., Melville, NY).

Ten specimens were designated as controls: positive and negative, 5 each. The remaining specimens were obturated with the continuous wave technique. A 0.06-taper Autofit GP cone (Analytical Technology, Glen- dora, CA) was fitted to working length. Cone fit and length were verified radiographically. The tip of the cone was coated with AH plus sealer (Dentsply Maillefer, Tulsa, OK) before obturation. A suitable size system B plugger (SybronEndo, Glendora, CA) was used to downpack the gutta percha at 5 mm short of the working length. The remainder of the canal was back-filled with thermoplasticized gutta percha using Obtura III (Obtura-Spartan, Fenton, MO).

Retrograde procedures

The apical 3 mm of all specimens was resected, under water spray, at a 90-degree angle to the long axis of the root using a #330 fissure bur (Brasseler USA) mounted in a high-speed handpiece (KaVo Dental Corporation, Charlotte, NC). The apical ends of the roots were prepared with the KiS ultrasonic tips (Obtura-Spartan). A cylindrical preparation, 3 mm deep, was created and rinsed with saline and dried with paper points. Suitable size microplugger (Obtura-Spartan) was selected.

Unfilled control specimens (n = 10) were set aside and received no retrofill; the remaining specimens were randomly assigned to 1 of 2 experimental groups (n = 15) according to retro-filling material:

- BCRR: EndoSequence BioCeramic Root-end Repair (Brasseler USA)
- MTA: white ProRoot MTA (Dentsply, Tulsa Dental Specialties)

All materials were prepared according to manufacturers’ instructions and condensed in the retropreparations using microplugger. Adequacy of root-end fillings was verified radiographically both buccolingually and mesiodistally. All specimens were then stored in a humidifier for 7 days to ensure complete setting of the materials.

Bacterial leakage model

The experimental set-up used to evaluate the bacterial microleakage was adapted from a previous study.16 Two millimeters of gutta percha was removed from the coronal portion of the obturated root canals to create a reservoir for the bacteria (Enterococcus faecalis). In the experimental and positive control groups, a double layer of nail varnish was used to seal the entire specimen surface except for the apical and coronal aspects; the specimens of the negative control groups were completely covered.

Then, 100 μL of trypticase-soy broth was pipetted into Eppendorf tubes. Specimens were mounted inside the tubes. Five microliters of E. faecalis suspension was dispensed into the previously prepared reservoir. The tubes were incubated in an anaerobic chamber (10% H₂, 10% CO₂, and balance N₂) at 37°C for 7 days. The broth from each tube was serially diluted 10-fold and plated on trypticase-soy blood agar and incubated again for another 5 days under identical conditions. The microleakage was confirmed by the presence of active bacterial growth.

Statistical analysis

Quantitative data were tabulated and analyzed using SPSS 16 (SPSS, Inc., Chicago, IL) software. The results were analyzed using 1-way analysis of variance and Tukey’s post hoc tests for significant differences between groups. Level of significance was set at $P \leq 0.05$.

RESULTS

The specimens in the negative control group showed no bacterial growth (0%), whereas the positive control group demonstrated distinct bacterial growth (100%). There was no significant difference ($P < 0.05$) in the number of samples that leaked in the MTA (53.3%) and the BCRR groups (66.7%) (Fig. 1).

DISCUSSION

Based on the results of this experiment, the hypothesis was accepted. Perhaps the most important predictor of success for periapical surgery is the sealing of the
root end. In the past, leakage was assessed using dye penetration methodologies using a variety of pigments, such as methylene blue and India and Pelikan ink. However, the reliability, reproducibility, and clinical relevance of these methods are questionable. Some researchers disagree with the use of such dyes because they have low molecular weights and, consequently, can penetrate into sites where protein and bacteria cannot. Moreover, dye penetration lacks uniformity around the margins of the root-end filling.

The composition of BCRR includes calcium silicate, zirconium oxide, tantalum pentoxide, calcium phosphate monobasic, and filler agents. Similar to MTA, BCRR also sets in the presence of moisture. According to the manufacturer, working time of BCRR is about 30 minutes and setting time is about 4 hours under normal conditions. However, it may take up to 12 hours under extremely dry conditions. The principal components of MTA are tricalcium silicate, bismuth oxide, dicalcium silicate, tricalcium aluminate, tetracalcium aluminoferite, and calcium sulfate dihydrate. By weight it is 75% Portland cement, 20% bismuth oxide, and 5% gypsum. MTA is marketed as ProRoot MTA. According to the manufacturer, the setting time is 4 hours.

Torabinejad et al. showed that, in 23% of specimens, MTA promoted cementum formation within 2 to 5 weeks after periapical surgery and more than 80% of the root-end cavities filled with MTA showed cementum deposition 10 to 18 weeks after surgery. Other studies on monkeys established MTA’s superiority (less inflammation and cementum formation at 5 months) over amalgam as a root-end filling material. MTA was the most favorable in terms of degree of polymorphonuclear infiltration, bone maturation, and cementum formation. In a prospective case series study on 276 teeth with white MTA as a root-end filling material, Saunders reported 88.8% clinical and radiographic success after 4 to 72 months. He concluded that using careful microsurgical techniques combined with MTA as a root-end filling material resulted in higher success rates for apical surgery. A meta-analysis of 30 articles indicated that MTA has a high clinical success rate, provides the best seal, shows superior biocompatibility, and is the only root-end filling material that promotes tissue regeneration when compared with amalgam, intermediate restorative material (IRM), and Super EBA.

The rationale behind using the strain of bacteria in this study was for several reasons. One reason was chosen because it is a part of the normal oral flora in humans and is found frequently in mixed infections. was also one of the most commonly isolated microbes from the root canal in secondary infections. Using human saliva is advantageous to some degree because it closely approximates the real clinical situation; on the other hand, it does not simulate temperature changes, the influence of diet, and salivary flow. The model chosen for this study, although in vitro, attempted to simulate clinical conditions; therefore, was chosen because of ease of arrangement and interpretation of the data.

Under the conditions of this study, there was no statistically significant difference between the 2 materials. A recent study showed that the cytotoxicity of BCRR is similar to white and gray MTA. The results of this study showed a positive performance by BCRR in vitro. However, the literature lacks well-designed, prospective clinical studies evaluating this relatively new bioceramic material. Clinicians should remain skeptical until a sufficient body of research becomes available.

REFERENCES

Reprint requests:
Uma Nair, DMD, MS
Assistant Professor
University of Florida
College of Dentistry
1600 SW Archer Road
D10-37, PO Box, 100436
Gainesville, FL 32610-0436
unair@dental.ufl.edu