service of Baylor College of Dentistry. We analyzed the data as to histologic type, location, presence of clinical pigmentation, and configuration, as well as patient age, gender, and race. Intracutaneous nevus was the most common type (57.1%), followed by common blue nevus (23.6%), compound nevus (8.3%), and junctional nevus (3.6%). Combined nevus and cellular blue nevus were extremely rare (2.4% each). The hard palate was the most commonly affected site (38.1%), followed by the buccal mucosa (17.86%), vermilion border (17.86%), and gingiva (11.9%). We also report a case of intracutaneous nevus with lipoatous-like changes and nevrotization on the gingiva. In addition, we report 2 cases of junctional dysplastic nevus, one on the vermilion border of the lip and the other on the hard palate. OMN and early developing melanoma can be clinically indistinguishable; therefore, all unexplained pigmented lesions of the oral cavity should be biopsied. Melanocytic lesions presenting dysplastic or atypical changes should be completely excised.


Introduction. Sjögren syndrome (SS) is a rare autoimmune dyscrasia. Primary SS (pSS), or Sicca syndrome, affects salivary and lacrimal glands predominantly, whereas secondary SS (sSS) occurs in conjunction with other autoimmune connective tissue disorders. In addition to reduced salivary and lacrimal function, serious systemic aspects of the disease are recognized. Care for SS patients is palliative, because no established therapies target the immune dysfunction directly. Initially, T cells were considered to be key mediators of disease; currently an important role for B cells is emerging, because B-cell abnormalities are seen systemically and within salivary glands. However, the contribution of B cells to SS is poorly understood. For B cells to function most effectively, they must be recruited to specific sites where they interact with other cells and secrete mediators to orchestrate immune responses. CXCL13 is a B-cell chemokine that is elevated in many autoimmune diseases. Accordingly, we hypothesized that CXCL13 is up-regulated during SS progression and may serve as a valuable biomarker of disease.

Study design. We quantified CXCL13 by real-time polymerase chain reaction and enzyme-linked immunosorbent assay at various disease time points using pSS and sSS models.

Results. CXCL13 transcript and protein levels increased with disease severity in salivary tissue and serum, respectively. Moreover, CXCL13 colocalizes with lymphocytes in salivary tissue, and serum CXCL13 correlates with saliva levels during late-stage disease.

Conclusion. These data indicate that CXCL13 in salivary tissue and/or sera may be pathogenetically involved in SS disease and may serve as a marker of SS progression and severity. Therapeutic targets of CXCL13 may provide an innovative approach in the management of this debilitating disease.


Kaposi sarcoma (KS) is an enigmatic vascular tumor thought to be a consequence of dysregulated expression of the human herpesvirus 8–encoded G protein–coupled receptor (vGPCR). Indeed, transgenic animals expressing vGPCR in just a few cells manifest vascular tumors histologically identical to human KS through a remarkable paracrine mechanism. Both human and vGPCR experimental KS lesions are characterized by prominent angiogenesis and vascular permeability attributed to the paracrine release of angiogenic mediators, most notably vascular endothelial growth factor (VEGF). To date, the relative contribution of these paracrine mediators to the angiogenic and exudative phenotype of KS lesions remains unclear. Here we show that vGPCR up-regulation of the VEGF/KDR conduit is not sufficient to explain the potent angiogenesis and vascular permeability observed in KS. Rather, we demonstrate that vGPCR up-regulation of angiopoietin-like 4 (ANGPTL4) plays a prominent role in promoting the angiogenic and exudative phenotype of this tumor. Inhibition of ANGPTL4 effectively blocks vGPCR promotion of angiogenesis and vascular permeability in vitro and tumorigenesis in vivo. These observations suggest that ANGPTL4 is a previously unrecognized target for the treatment of patients with KS. Because angiogenesis and increased vessel permeability are common themes in all solid tumors, these results may have a broad impact on our understanding and treatment of cancer.