Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis

Abstract
Aims: To investigate ex vivo peripheral neutrophil extracellular trap (NET) production and their subsequent degradation by plasma in chronic periodontitis patients, and periodontally and systemically healthy-matched controls.

Materials and Methods: Chronic periodontitis patient and control (n = 40 pairs) peripheral blood neutrophils (PBN) were stimulated for NET quantification. A subset of patients received non-surgical periodontal therapy (n = 19) and NETs were quantified 3 months later alongside controls. Blood plasma was collected from patients and controls to quantify plasma-induced NET degradation (n = 19 pairs). Subsequent experiments quantified plasma concentrations of DNase-1, immunoglobulin G (IgG), free light chains (FLCs), and cystatin C.

Results: No differences were observed in NET production between patients and controls. However, NET production decreased significantly in patients post-treatment. Plasma NET degradation was significantly lower in patients than controls, which may be due to significantly reduced DNase-1 levels as demonstrated, or potentially due to elevated IgG/FLC concentrations in patients. NET degradation post-periodontal treatment was comparable between patients and controls.

Conclusions: NET production was comparable between patients and controls; however, non-surgical therapy causes attenuated NETs. NET degradation by plasma is impaired in untreated chronic periodontitis, potentially increasing the chronic NET burden, which may enhance antimicrobial function, or conversely, increase the risk of autoimmune/inflammatory responses.

Key words: chronic periodontitis; NET degradation; neutrophil extracellular traps; neutrophils

Accepted for publication 21 September 2016

Conflict of interest and source of funding statement
The authors declare no conflicts of interest with this investigator-led research. Phillipa White is a PhD student with the University of Birmingham’s Periodontal Research Group, funded by the MRC (grant MR/J500434/1) and administered through the College of Medical and Dental Sciences. Additional funding was provided by the Oral and Dental Research Trust (grant number 14945) and the Royal College of Surgeons (grant number 16209) to Martin Ling for aspects of this work.

Periodontitis is a chronic inflammatory disease, initiated by dysbiosis within the subgingival plaque biofilm and progressed by a damaging dysregulation of the host’s inflammatory-immune response (Hajishengallis 2014). This results in chronic, destructive, and non-resolving inflammation of the periodontal tissues.

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
(Bascones-Martínez & Figuero-Ruiz 2003). In addition to periodontal tissue destruction, periodontitis is associated with other inflammatory diseases of ageing, such as diabetes mellitus and rheumatoid arthritis (de Pablo et al. 2009, Chapple & Genco 2013).

Neutrophils are the principal inflammatory cells in active periodontal lesions. Peripheral blood neutrophils (PBN) isolated from periodontitis patients are hyperactive, with regard to reactive oxygen species (ROS) generation in the absence of exogenous stimulation, and hyper-reactive, exhibiting increased ROS production when subjected to stimulation (Matthews et al. 2007a,b). The underlying mechanisms responsible for this neutrophil hyper-reactivity remain to be elucidated; however, there are indications for both constitutive abnormalities in periodontitis neutrophils, and also evidence for neutrophil priming by serum-derived cytokines (Dias et al. 2011, Ling et al. 2015). Resultant extracellular ROS release contributes to oxidative stress and downstream host collateral tissue damage (Chapple & Matthews 2007).

Neutrophils also have alternative defence mechanisms at their disposal, including the production of neutrophil extracellular traps (NETs). NETs constitute a highly conserved antimicrobial strategy that results from inflammatory immune cells releasing their de-condensed nuclear chromatin (DNA) into the extracellular space, where they immobilize and kill pathogens (Brinkmann et al. 2004). NET structures are reportedly present in plaque biofilms (Hirschfeld et al. 2015), as well as in the gingival pocket epithelium and in pus from the gingival crevice (Vitkov et al. 2010). We have also demonstrated NET-like structures within periodontally inflamed tissues (Cooper et al. 2013) and proposed that in addition to NETs’ initially beneficial role, abnormal NET release and/or accumulation within periodontal tissues may trigger autoinflammatory responses and thus a destructive inflammatory immune response (Cooper et al. 2013, de Pablo et al. 2013). Notably, NET production has been associated with the pathogenesis of several other autoimmune diseases, such as systemic lupus erythematosus (SLE) (Hakkim et al. 2010, Leffler et al. 2012).

NET release requires NADPH-oxidase activation, resulting in the sequential production of superoxide and hydrogen peroxide, which is subsequently converted by myeloperoxidase (MPO) to hypochlorous acid (HOCl) (Fuchs et al. 2007, Palmer et al. 2012). There is currently no literature investigating NET production in chronic periodontitis patients. Given that periodontal PBNs demonstrate ROS hyper-reactivity, it is important to determine NET production in periodontitis patients.

Specific mechanisms contributing to NET clearance from tissues remain to be fully elucidated; however, reports indicate that NETs are degraded by host and bacterial DNases (Meng et al. 2012). Recently, it has been reported that the DNase-containing sera of systemically healthy individuals are capable of degrading NETs; however, this mechanism is compromised in subsets of patients with SLE (Hakkim et al. 2010, Leffler et al. 2012). Impaired NET degradation is believed to result from formation of a physical barrier, for example, from elevated levels of anti-NET immunoglobulins, which prevent enzymatic NET degradation (Hakkim et al. 2010).

Notably, immunoglobulins comprise two heavy and two light chains (either kappa or lambda), and during their normal synthesis by B cells, light chains are produced in excess and released into circulation as free light chains (FLCs) (Solomon 1985). FLC overproduction has been reported in several chronic diseases, which may be the result of chronic immune stimulation (Brebner & Stockley 2013). However, the association between FLCs and NET degradation has not been investigated previously.

de Pablo et al. (2009) demonstrated that periodontitis patients produce serum autoantibodies in response to citrullinated and un-citrullinated peptides. Thus, while increased NET production or retention within periodontal tissues may serve to prolong NET antimicrobial function, NET-derived citrullinated peptides may concomitantly facilitate autoantibody generation and collateral host periodontal tissue damage (Cooper et al. 2013, White et al. 2016).

The purpose of this study, therefore, was to determine whether NET release is altered in chronic periodontitis patients, compared with periodontally healthy age- and gender-matched controls. In a subset of patients, NET release was quantified following successful periodontal therapy and compared with the same healthy controls. Additionally, NET degradation by patient and control plasma pre- and post-treatment was investigated. Subsequent experiments sought to establish whether an immunoglobulin or immunoglobulin-FLC barrier prevents the enzymatic removal of NETs in periodontitis patients. This analysis involved the quantification of immunoglobulin G (IgG) and FLCs in patient and control plasma samples.

Materials and Methods

Study populations

Volunteers were diagnosed with chronic periodontitis at Specialist Periodontal Centres in Birmingham, United Kingdom (n = 20) and Thessaloniki, Greece (n = 20). Periodontitis was defined as the presence of at least two non-adjacent sites with probing pocket depths >4 mm, along with radiographic bone loss ≥30% of the root length in accordance with the consensus criteria of the European Federation of Periodontology (Tonetti & Caffey 2005). Healthy controls were recruited from dental staff members at Birmingham, United Kingdom and Thessaloniki, Greece. All volunteers were aged (±5 years) and gender-matched to their corresponding patient pair. All participants were systemically healthy, had not smoked for at least 10 years, were not pregnant and were not taking any medication that may influence periodontal health. Ethical approval for the study was obtained from West Midlands Research Ethics Committee, United Kingdom (10/H1208/48), and the School of Dentistry ethical committee at Aristotle University, Thessaloniki, Greece (317/23/1/2013).

Non-surgical periodontal therapy was provided in Birmingham, United Kingdom, which consisted of scaling
and root surface debridement of all periodontal pockets >4 mm, performed under local anaesthesia on a quadrant-by-quadrant basis within a maximum of 4 weeks.

NET release was determined at both centres in periodontitis patients and controls prior to periodontal treatment using the same laboratory protocols and reagents. To ensure consistency of approach and calibration of centres, DS (Thessaloniki) visited and trained with PW (Birmingham) in all NET protocols. Analyses of post-treatment NET release, NET degradation, plasma IgG, FLCs, and cystatin C concentrations were only performed on samples from Birmingham volunteers for logistical reasons.

Collection of peripheral blood and neutrophil isolation

Venous blood was collected in lithium heparin vacutainers from patients and healthy controls in parallel. Neutrophils were isolated as described previously (Matthews et al. 2007a, Oh et al. 2008). In brief, neutrophils were isolated by centrifugation of venous blood over discontinuous Percoll density gradients. Following centrifugation, the neutrophil layer was aspirated and added to lysis buffer to remove unwanted erythrocytes. The cells were subjected to a second lysis buffer wash, prior to a final PBS wash. The supernatants were discarded and the cells were re-suspended in PBS prior to counting. Cell viability and purity were confirmed by trypan blue exclusion and flow cytometry, respectively, and was typically >98%.

Collection of plasma

Venous blood was collected in lithium heparin vacutainers from patients and controls. Plasma was isolated by centrifugation (1000 g for 30 min. at 4°C), aliquoted into cryotubes (500 µl in each), and stored at −80°C.

Quantification of NETs

Neutrophil extracellular traps production was quantified as previously described (Palmer et al. 2012). Briefly, neutrophils were re-suspended in RPMI-1640 and added to a pre-blocked 96-well microplate (1 × 10^5 in 150 µl per well). Following a 30 min. baseline incubation period (37°C), selected wells were stimulated with 50 nM phorbol myristate acetate (PMA) or 0.75 mM hypochlorous acid (HOCl). Cells were incubated for 3 h (37°C, 5% CO₂) and NET DNA was subsequently digested by the addition of micrococcal nuclease (MNase) (15 µl at 1 unit/ml) for 15 min. Cells were pelleted (10 min. at 1800 g) and the supernatant (150 µl) transferred to a black microplate prior to the addition of Sytox green (Life Technologies; 15 µl, 10 µM, Carlsbad, California, US). Fluorescence was read in arbitrary fluorescence units (AFU) using a fluorometer (Birmingham – Twinkle LB970; Berthold Technologies; Thessaloniki – Victor X5; PerkinElmer Inc. Waltham, Massachusetts USA). NET production by patients and controls was compared by fluorescence microscopy, whereby isolated neutrophils (1 × 10^5) were added to clear 24-well plates in 260 µl RPMI-1640 and stimulated as previously described. Following stimulation, cells were incubated for 3 h (37°C, 5% CO₂), after which, 25 µl of 10 µM Sytox green was added to each well and NETs visualized (epi-fluorescent microscope, Nikon Eclipse TE300) (Nikon, Tokyo, Japan). A calibration curve was generated by quantifying Sytox green stained-calf thymus DNA to enable data normalization between the centres. This approach provided interpolated values for NET production in µg/ml.

Quantification of NET degradation by plasma

Neutrophils were isolated from a systemically and periodontally healthy individual and stimulated for NETs with HOCl as previously described (Palmer et al. 2012). Post-NET release, previously isolated plasma from periodontitis patients and matched controls were defrosted and diluted to 10% in PBS (Hakkim et al. 2010). Plasma was added to wells in 50 µl aliquots and incubated for 3 h (37°C, 5% CO₂). Selected wells containing NETs were treated with 1 unit/ml MNase for 10 min. to act as a positive control for NET degradation, and were considered as the “100% NET degradation” standard. After 3 h incubation, plates were centrifuged (10 min. at 1800 g) and the number of NETs liberated into the supernatant, as a result of incubation with plasma, were quantified as described previously.

Quantification of plasma DNase-I, IgG subclasses 1–4, FLCs, and cystatin C

DNase-I levels were measured in previously collected patient and control plasma samples (n = 19 pairs; pre-treatment only) using a fluorescence-based DNase detection kit (Jena Bioscience (Jena, Germany), in which plasma (10 µl) was incubated with a fluorescent DNase probe. After incubation (30 min. at 37°C, 5% CO₂), fluorescence was detected using a fluorometer under the same conditions as for NET quantification.

Previously collected plasma samples were analysed by The Binding Site Group Ltd (Birmingham, UK). IgG subclasses I–4 were quantified using the SPAPLUS® analyser. In addition, FLC kappa and FLC lambda concentrations were quantified using the SPAPLUS® turbidimeter (Freelite; The Binding Site Group Ltd). Cystatin C levels were also quantified using the SPAPLUS® assay. Cystatin C levels were measured to determine whether excessive plasma FLCs in periodontitis patients might have resulted from impaired renal FLC clearance.

Data analysis

Statistical analyses in GraphPad software, La Jolla, San Diego, US. 5 included NET production pre- and post-treatment, NET degradation, and IgG and FLC quantification as for NET quantification. Previously collected plasma samples were analysed by The Binding Site Group Ltd (Birmingham, UK). IgG subclasses I–4 were quantified using the SPAPLUS® analyser. In addition, FLC kappa and FLC lambda concentrations were quantified using the SPAPLUS® turbidimeter (Freelite; The Binding Site Group Ltd). Cystatin C levels were also quantified using the SPAPLUS® assay. Cystatin C levels were measured to determine whether excessive plasma FLCs in periodontitis patients might have resulted from impaired renal FLC clearance.

Results

Clinical measures including longitudinal changes following periodontal treatment

Clinical measures for the chronic periodontitis patients and matched controls recruited in the United Kingdom and Greece are presented in Table 1. All clinical measures of periodontal disease were significantly reduced at the post-treatment review (p < 0.05), consistent with the literature and with patient levels becoming comparable to those of controls (Ling et al. 2015, 2016).
Table 1. Clinical measures of chronic periodontitis patients and matched healthy controls recruited in the United Kingdom (baseline n = 20; review n = 19) and Greece (baseline n = 20).

<table>
<thead>
<tr>
<th>Clinical measures</th>
<th>Chronically ill</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Review</td>
</tr>
<tr>
<td>Age, years, mean ± SD (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>46 ± 8 (37–61)</td>
<td>46 ± 8 (32–62)</td>
</tr>
<tr>
<td>Greece</td>
<td>52 ± 8 (36–70)</td>
<td>NR</td>
</tr>
<tr>
<td>Probing pocket depth, mm, mean ± SD (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>3.0 ± 0.8*</td>
<td>2.1 ± 0.5**</td>
</tr>
<tr>
<td>Greece</td>
<td>3.9 ± 0.8*</td>
<td>NR</td>
</tr>
<tr>
<td>No. of probing pocket depths >4 mm, median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>27 (5–91)*</td>
<td>7 (0–52)**</td>
</tr>
<tr>
<td>Greece</td>
<td>65 (50–100)*</td>
<td>NR</td>
</tr>
<tr>
<td>% sites bleeding on probing, median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>43 (16–87)*</td>
<td>14 (3–35)**</td>
</tr>
<tr>
<td>Greece</td>
<td>52 (30–100)*</td>
<td>NR</td>
</tr>
<tr>
<td>Gingival index, median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2 (1–3)*</td>
<td>1 (0–1)**</td>
</tr>
<tr>
<td>Plaque index, median (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>2 (1–3)*</td>
<td>1 (0–2)**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical measures</th>
<th>Chronic periodontitis patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Review</td>
</tr>
<tr>
<td>Age, years, mean ± SD (range)</td>
<td>46 ± 8 (32–62)</td>
<td>46 ± 8 (32–62)</td>
</tr>
<tr>
<td>Probing pocket depth, mm, mean ± SD (range)</td>
<td>3.0 ± 0.8</td>
<td>2.1 ± 0.5**</td>
</tr>
<tr>
<td>No. of probing pocket depths >4 mm, median (range)</td>
<td>27 (5–91)</td>
<td>7 (0–52)**</td>
</tr>
<tr>
<td>% sites bleeding on probing, median (range)</td>
<td>43 (16–87)</td>
<td>14 (3–35)**</td>
</tr>
<tr>
<td>Gingival index, median (range)</td>
<td>2 (1–3)</td>
<td>1 (0–2)**</td>
</tr>
</tbody>
</table>

Volunteer ages (at time of sampling) were compared by Mann–Whitney test (no significant differences within or between groups). Probing pocket depths were compared by one-way ANOVA followed by Tukey–Kramer test. All other comparisons were performed using Kruskal–Wallis test followed by Dunn’s test. Clinical data for the UK volunteer cohorts have been published previously (Ling et al. 2015).

Periodontitis is not associated with elevated NET production by peripheral blood neutrophils

No significant difference was measured in extracellular DNA release from PBNs in patients compared with controls. This was evident in both patient populations (Birmingham, United Kingdom – n = 20; Thessaloniki, Greece – n = 20) for PBS-treated (negative control, p = 0.89) as well as PMA- (p = 0.52) and HOCl-stimulated (p = 0.73) PBNs (Fig. 1a). Comparable NET production between patients and controls was observed in both patient populations when analysed separately, as well as when pooled. Similarly, representative micrographs of Sytox-stained DNA showed the characteristic network of extracellular DNA strands, with no qualitative differences in NET morphology between patients and controls (representative images, n = 3) (Fig. 1b).

NET production significantly decreased following successful periodontal treatment

In a subset of patients from Birmingham, United Kingdom, NET assays were repeated between 2 months (minimum) and 3 months (maximum) following successful periodontal treatment and assayed in parallel with the same healthy controls (n = 19 pairs). Plasma-derived NET degradation in patients was comparable with that of their healthy counterparts (Mann–Whitney, p = 0.124). However, the range of patient NET degradation still exhibited greater heterogeneity compared with healthy controls (Fig. 3).

Comparison of plasma DNase-1, IgG, FLC, and cystatin C concentrations in periodontitis patients and matched periodontally healthy controls

DNase-I concentrations measured in pre-treatment patient and control plasma samples (n = 19 pairs) were significantly lower in patient samples compared with controls (Mann–Whitney, p = 0.04) (Fig. 4).

Protein turbidimetric analysis demonstrated that plasma IgG concentrations were consistently higher in patients, compared with controls. This was statistically significant for IgG subclass 2 pre-treatment (Mann–Whitney *p = 0.038), IgG subclass 3 pre- and post-treatment (Mann–Whitney **p = 0.0007, ***p = 0.0042, pre- and post-treatment, respectively), and IgG subclass 4 post-treatment (Mann–Whitney *p = 0.042) (Fig. 5).

Free light chain concentrations were also consistently higher in patients compared with controls. This was statistically significant for FLC kappa pre- and post-treatment (Mann–Whitney *p = 0.049, **p = 0.048 pre- and post-treatment, respectively), the kappa/lambda ratio pre-treatment (Mann–Whitney *p = 0.047), and summated FLC levels pre-treatment (Mann–Whitney *p = 0.032) (Fig. 6).

There was, however, no significant difference in cystatin C levels (mg/l) between control and patient plasma samples both pre- and post-treatment (Mann–Whitney p = 0.74, p = 0.82 pre- and post-treatment, respectively, n = 19 matched pairs; data not shown), demonstrating no impairment of renal FLC clearance.

© 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
Neutrophils play a pivotal role within the periodontal lesion in response to colonization by pathogenic bacteria (Miyasaki 1991, Schenkein 2006). However, it is widely accepted that a dysregulated neutrophilic response contributes to tissue destruction in chronic periodontitis (Van Dyke et al. 1993). Neutrophil hyper-responsivity with regard to ROS production is likely to contribute to the degradation of periodontal tissues, and given the recently reported deficiencies in neutrophil chemotactic accuracy in periodontitis patients (Roberts et al. 2015), may increase neutrophil tissue transit times and consequently cause collateral tissue damage (Waddington et al. 2000, Matthews et al. 2007a,b).

The putative role of NETs is to immobilize and kill pathogens by co-localizing with, and tethering the microorganisms. Currently, it is unknown whether NETs have the capacity to kill all bacterial species, and it is postulated that NETs may only immobilize bacteria (Beiter et al. 2006, Menegazzi et al. 2012). It is recognized that NET production relies upon ROS, specifically NADPH-oxidase activation and the subsequent production of hydrogen peroxide (Fuchs et al. 2007). Recent reports have confirmed this mechanism and also identified the involvement of MPO in NET formation (Papayannopoulos et al. 2010, Metzler et al. 2011, Kirchner et al. 2012). Thus, we hypothesized that ROS hyperactivity and -reactivity in periodontitis patient neutrophils would translate to elevated NETs.

Neutrophil extracellular traps have previously been shown to exist in purulent exudate from periodontal pockets (Vitkov et al., 2009, Vitkov et al. 2010), and this is corroborated by recent findings that demonstrate that neutrophils infiltrate the dental plaque and subsequently release NET structures (Hirschfeld et al. 2015). Further support for the presence of NET production in periodontitis is that periodontal pockets reportedly provide an appropriate environment for ROS production, by the provision of sufficient oxygen tension and pH (Mettraux et al., 1984, Eggert et al., 1991). However, alternative
NADPH-oxidase-independent pathways leading to NET production have also been reported (Pilsczek et al. 2010, Parker et al. 2012). No differences, however, were measured in PBN NET production between patients and controls. A potential explanation could relate to a recently reported self-protective mechanism within glutathione deficient periodontitis neutrophils, involving re-siting of certain NADPH-oxidase components to outer cell membrane lipid rafts (Dias et al. 2013). This mechanism was reported in PBN from periodontitis patients following the discovery that these cells were oxidatively stressed, as evidenced by an altered redox state. Thus, when challenged by a further stimulus, the periodontitis patient neutrophils release superoxide extracellularly to avoid further oxidative stress and risk of cell necrosis. It is therefore plausible that re-direction of ROS to the extracellular space may limit the intracellular ROS levels available for NET production (Guichard et al. 2005, Dias et al. 2013).

To investigate NET production further, their quantification post-treatment was determined in a subset of periodontitis patients’ neutrophils and compared with their respective healthy controls (n = 19 pairs). A significant decrease in NET release was evident in periodontitis patient neutrophils following successful therapy. Previous findings have demonstrated that successful non-surgical treatment results in a reduction in neutrophil ROS hyper-reactivity following FcR stimulation, unlike baseline ROS hyperactivity, which did not normalize as a result of treatment (Matthews et al. 2007a). It has been proposed that priming of PBNs by cytokines within blood plasma may contribute to the FcR-mediated neutrophil hyper-reactive phenotype observed in periodontitis, which is reversible with effective treatment (Dias et al. 2011). Reduced neutrophil priming and ROS production following successful treatment may represent one explanation for the reduced post-therapy NET production.

NET degradation by chronic periodontitis patients’ plasma was also quantified, and demonstrated that NET degradation was significantly lower in a subset of chronic periodontitis patients pre-treatment, relative to controls. To the best of our knowledge, this is the first report evaluating NET removal in periodontitis patients.
involved in NET clearance remain to be thoroughly elucidated; however, reports indicate that host-derived DNases degrade NETs to affect their removal from tissues where high levels of citrullination may potentiate autoimmune responses against citrullinated proteins. Attenuated NET degradation has been reported in SLE, and has been suggested to result from either the presence of DNase-1 inhibitors in patient serum or from some form of physical molecular barrier that prevents DNase-1 access to cleavage sites on the NET backbone (Hakkim et al. 2010, Leffler et al. 2012).

We report, for the first time, lower plasma DNase-1 concentrations in patients compared with controls, as well as elevated kappa FLCs, kappa/lambda ratios, and summated FLCs, which may individually or in combination explain the decreased NET degradation measured in patients. Notably, cystatin C levels were comparable between patients and controls, indicating that elevated FLCs are not the result of insufficient renal FLC clearance, but likely the result of increased FLC production by B cells, which are the dominant lymphocyte in active periodontitis lesions. Increased circulating IgG and FLCs in patients may translate to IgG and/or FLC binding to NET structures, given the significantly elevated serum autoantibody levels to citrullinated histones of DNA already reported by our group in periodontitis patients (de Pablo et al. 2009). Such immunoglobulin binding may either tether bacteria to NETs, facilitating their destruction, or conversely may provide a physical barrier that prevents the degradation of NETs by DNase-1, as demonstrated in SLE (Leffler et al. 2013). However, further extensive studies into the role of IgGs and FLCs in NET degradation are warranted and currently underway to further elucidate the mechanisms of decreased NET degradation in periodontitis.

Attenuated NET removal may constitute an antimicrobial host response during infection, as NETs can prevent microbial dissemination by entrapping a range of periodontal bacteria (Brinkmann et al. 2004). The host’s ability to adjust the extracellular “life-span” of NETs in response to the microbial biofilm may also explain why no differences in PBN NET release were observed between patients and controls. Conversely, an accumulation of NETs as a result of impaired clearance may impact deleteriously upon the host, as it has been reported that NETs provide a source of autoantigens, which may trigger autoimmune responses and facilitate disease progression (Krysko et al. 2006, Lande et al. 2011, Spengler et al. 2015). It is
also possible that NET production in periodontal tissues may serve as a plausible mechanism for the production of anti-citrullinated protein antibodies (ACPA) following a break in immune tolerance to NET-derived citrullinated (de Pablo et al. 2009), and this process may be exacerbated if NETs are not removed in a timely manner. Indeed, this is one plausible explanation for the higher prevalence of ACPAs and higher serum ACPA titres in periodontitis patients compared with controls (de Pablo et al. 2013).

Conclusions

The reported studies have demonstrated that NET production is not significantly different between patients and controls, however, patient NET production decreased following successful periodontal therapy. Notably, in a subset of patients in whom NET degradation by plasma was investigated, patients were less able to degrade NETs, compared with controls. The reported decreased plasma DNase levels may explain, in part, the impedet NET degradation observed in patients. Another plausible mechanism may be the reported increased plasma IgG and FLC levels, potentially generating a physical barrier to prevent NET removal in patients. Further experiments are warranted to confirm these hypotheses. Notably, NET degradation assays post-treatment demonstrated comparable results between patients and controls. Taken together, the data provide new insights into the myriad of abnormal neutrophil behaviours displayed during the pathogenesis of periodontitis, specifically in relation to NET production and clearance.

Acknowledgements

The authors are very grateful to The Binding Site Group Ltd (Birmingham B29 6AT, United Kingdom) for quantifying the levels of FLCs, IgGs, and cystatin C in the plasma samples using the SPAPLUS® analyser.

References

Practical implications: Excess NET production or retention within tissues may serve as an important antimicrobial strategy in untreated periodontitis; conversely this may contribute to the pathogenesis of periodontitis via autoimmune responses.

Address: Iain Chapple
The School of Dentistry
College of Medical and Dental Sciences
University of Birmingham
Birmingham Community Healthcare Trust
Birmingham B3 7EG
UK
E-mail: i.l.c.chapple@bham.ac.uk

