Mechanisms of distraction in acute pain perception and modulation

Kathryn A. Birnie, Christine T. Chambers, Christina M. Spellman

1. Common applications and efficacy of distraction
Distraction is a shifting of attention away from pain or painful stimuli to stimuli that are more engaging or enjoyable. Distraction for acute pain can be internal (eg, imagery) or external to the individual; use audio (eg, music), visual (eg, book), or audiovisual (eg, movies) stimuli, require passive or interactive engagement, or involvement of others (eg, health care providers, parents).

2. Mechanisms of distraction for acute pain

2.1. Cognitive
Mechanisms of distraction center on it reducing or interfering with attention to pain. The limited attentional capacity theory posits that the more attentional resources used by distraction, the less resources are available for perceiving pain. According to the multiple resource theory, the more a distracter competes for the same perceptual and spatial resources used to process pain, the more effective the distracter will be. These theories predict that interactive or multisensory distracters should be more effective, although results are mixed. The neurocognitive model of attention suggests that involuntary attention demanded by pain (bottom-up process) is modulated by a voluntary goal-directed effort to prioritize attention to specific stimuli (top-down processes). These top-down processes are directed by the degree of attentional investment required and what is attended to as goal-relevant information. Consistent with this, distraction seems less effective when pain holds increased salience (ie, high levels of pain catastrophizing, fear of pain, or pain-related threat), but only in the absence of goal-directed motivation.

2.2. Learning processes
A less discussed mechanism relates to behavioral learning theory. Individuals are posited to develop a conditioned fear or distress response after pairing of pain with a previously unconditioned stimulus (eg, medical procedure equipment). Distraction is believed to interfere with this process by (1) reducing or avoiding development of a conditioned fear response by diverting attention away from painful stimuli and previously unconditioned stimuli; and (2) eliciting behaviors or affective states incompatible with distress (eg, relaxation).

References

Copyright © 2017 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.
Top-down cognitive and learning mechanisms:
• attention
• conditioned response modulated by:
 • pain catastrophizing
 • fear of pain and pain-related threat
 • goal prioritization

Neurobiological mechanisms:
Decreased activation in the:
• thalamus
• primary and secondary somatosensory cortices
• insula
• anterior cingulate cortex

Increased activation in the:
• periaquaductal gray
• cingulo-frontal cortex
• posterior thalamus

Bottom up influences:
• intervention (e.g., novelty, level of engagement and interaction)
• contextual (e.g., setting, interaction with others)